Engineering catalytic contacts and thermal stability: gold/iron oxide binary nanocrystal superlattices for CO oxidation.

نویسندگان

  • Yijin Kang
  • Xingchen Ye
  • Jun Chen
  • Liang Qi
  • Rosa E Diaz
  • Vicky Doan-Nguyen
  • Guozhong Xing
  • Cherie R Kagan
  • Ju Li
  • Raymond J Gorte
  • Eric A Stach
  • Christopher B Murray
چکیده

Well-defined surface, such as surface of a single crystal, is being used to provide precise interpretation of catalytic processes, while the nanoparticulate model catalyst more closely represents the real catalysts that are used in industrial processes. Nanocrystal superlattice, which combines the chemical and physical properties of different materials in a single crystalline structure, is an ideal model catalyst, that bridge between conventional models and real catalysts. We identify the active sites for carbon monoxide (CO) oxidation on Au-FeO(x) catalysts by using Au-FeO(x) binary superlattices correlating the activity to the number density of catalytic contacts between Au and FeO(x). Moreover, using nanocrystal superlattices, we propose a general strategy of keeping active metals spatially confined to enhance the stability of metal catalysts. With a great range of nanocrystal superlattice structures and compositions, we establish that nanocrystal superlattices are useful model materials through which to explore, understand, and improve catalytic processes bridging the gap between traditional single crystal and supported catalyst studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization and Catalytic Behaviour of Nanostructured Iron Oxide Powder from Waste Pickle Liquor of Steel Industry

Nanostructured iron oxide powder that has been recovered from waste pickling liquor unit of steel industry was studied for oxidation catalytic applications. In this research, the powder was characterized by X-ray diffraction (XRD) and transition electron microscopy (TEM) for determination of phase structure, morphology and particle size. Furthermore, the specific surface area of the powder was ...

متن کامل

Enhanced energy transfer in quasi-quaternary nanocrystal superlattices.

Quasi-quaternary nanocrystal superlattices are assembled by using exclusively core-shell particles as building blocks. The assemblies show an enhancement of energy-transfer from cadmium selenide-based core-shell quantum dots to gold-iron oxide core-shell nanocrystals compared to random mixtures of the same components.

متن کامل

Catalytic oxidation of airborne toluene by using copper oxide supported on a modified natural diatomite

The catalytic oxidation of toluene over copper oxide supported on natural diatomite was investigated. The catalyst was prepared by the wet impregnation method and characterized by using the Brunauer Emmett Teller (BET), field emission Scanning Electron Microscopy (FESEM), X-ray diffraction (XRD), X-ray fluorescence (XRF) and Temperature-programmed reduction (TPR) analysis. The highest catalytic ...

متن کامل

Catalytic oxidation of airborne toluene by using copper oxide supported on a modified natural diatomite

The catalytic oxidation of toluene over copper oxide supported on natural diatomite was investigated. The catalyst was prepared by the wet impregnation method and characterized by using the Brunauer Emmett Teller (BET), field emission Scanning Electron Microscopy (FESEM), X-ray diffraction (XRD), X-ray fluorescence (XRF) and Temperature-programmed reduction (TPR) analysis. The highest catalytic ...

متن کامل

Au nano dendrites/composition optimized Nd-dopped cobalt oxide as an efficient electrocatalyst for ethanol oxidation

In this study, Nd-doped cobalt oxide (Nd-Co3O4) nanoparticles were prepared by a combustion synthesis procedure using Co(acac)3 complex. The nanoparticles were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Then, the effect of Nd-Co3O4 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 135 4  شماره 

صفحات  -

تاریخ انتشار 2013